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SOLUTION OF VARIATIONAL PROBLEMS BY MEANS OF A

GENERALIZED NEWTON-RAPHSON OPERATOR
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Grumman Aircraft Engineering Corporation
Bethpage, N.Y.

ABSTRAC ' .--. I _-_ /T r-_: . , !

This paper presents the development of an indirect method for

solving variational problems by means of an algorithm for obtaining

the solution to the associated nonlinear two-point boundary value

problem. The method departs from the usual indirect procedure of

successively integrating the nonlinear equations and adjusting

arbitrary initial conditions until the remaining boundary conditions

are satisfied. Instead, an operator is introduced which produces a

_ sequence of sets of functions which satisfy the boundary conditions

but in general do not satisf_ the nonlinear system formed by the

state equations and the Euler-Lagrange equations. Under appropriate

conditions this sequence converges uniformly and rapidly (_uadrati-

cally) to the solution of the nonlinear boundary value problem. The

computational effectiveness of Ehe algorithm is demonstrated by three

: pumerical examples.
i
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I INTRODUCTION

The mathematical theory used for the study of optimizatien

, problems is the Calculus of Variations. Application of this theory

to meaningful models of physical situations generally results in a

mathematical representation of the solution which requires some

numerical technique to effect solutions of use to tile engineer.

Since the major computational device available today is the high

speed digital computer, e.g., the IBM 7094, an a priori requirement

for a n_L1erical algorithm is that it be systenmtically adaptable to

- high speed digital computation. For the Calculus of Variations ,

there are two general numerical approaches; the Direct Methods,

and the Indirect Methods. The direct methods proceed by solving

a sequence of nonoptimal problems with the property that each suc-
i

cessive set of solution functions yields an improved value for the

functional being optimized. An example of such a procedure is the

Method of Gradients which has been applied to a variety of problems

with considerable success. The indirect methods are concerned to

i find by numerical means a set of functions which satisfy the neces-

sary conditions for an extremal, i.e., the Euler-Lagrange differen-

tial equations. These necessary conditions and boundary conditions

form a nonlinear boundary value problem and it is here that the

_ numerical difficulty arises. The usual approach to this problem ,

• is the systematic variation of arbitrarily chosen initial conditions

until Lhe remaining boundary conditions are met. This technique has

proved largely unsuccessful owing to increased dimensionality of the

interesting problems and to the sensitivity of boundary conditions

to small changes in initial conditions. In lieu of this an algorithm _--

has been developed which proceeds by solving a sequence of linear

boundary value problems such that the sequence of solutions converges

to the solution of the nonlinear problem. Since the linear boundary

value problem is easily handled numerically the algorithm is readily

adaptable to high speed digital computation.

m

. 2

._,
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in what follows we shall discuss this approach in some detail

including a discussion of the numerical application. This is fol-

lowed by three numerical examples to illustrate the computational

effectiveness of the method.

For comparison with other methods for handling the associated
i 2

boundary value problem see Breakwell, et al., Scha*'mack, and
3

Kelley, et al. For a direct comparison of gradient, second vari-

ation, ana generalized Newton-Raphson techniques, as applied to a
4

specific optimization problem, see Kopp, et ai.

THE GENERALIZED NEWTON-RAPHSON OPERATOR

We are concerned with nonlinear operator equations of the fol-

lowing form

BX = 0

where X is an element of an appropriate metric space S and B

is a nonlinear operator.

For the case of the nonlinear two-point boundary value problems

of interest herein the operator equation BX = 0 is given by the

following system of nonlinear differential equations and boundary

conditions:

X - F(X,t) = 0 , t e [t0,tf]

x (I) (to) = x_ I) x (I) (tf) = xf(I)

O • • O

x (to) = x0 x (tf)= x! ,
4

f
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where

j ...jX

/

F = (f(1), ,".,f(N)_

f(i) = f(i)<x(1), ...,x (N),t_ , i = l,...,N

The metric space S is given by

S = (t): x (i)(t) is continuous on [t0,t f] , i = I,...,N ,
[

with the metric

N

t
i=l

We define an operator A on S by Xn+ I = AXn, n = 0,i,...; X0

arbitrary in S,

x_.1 = J(Xn,t)[Xn+1 - x] + F(x,t)

x(1)n(tO)= x_l) x(1)n(if)= x_l)

xn (to) = x0 xn (if)= xf

V-

In 4

I • ill li| IFi ] II II

1966014492-006



41

where J(X,t) is the Jacobian matrix of partial derivaL_ves of

the f(i) with respect to the x (j) i = i ,_, j = i, ,N

Under appropriate conditi._ns the sequence IXn] converges

strongly to the solution X of the operator equation BX = 0,

i.e., lim P(Xn, X* ) = 0, whe_'e X* is the _olu_ion of the
n-_

nonlinear boundary value problem. The metric p implies uniform

convergence for each of the componen_ functio1_s x (i) (t) of X(t).

The operator A is called the Generalized Newton-Raphson

operator since it may be obtained from a direct generalization of

- the Newton-Raphson sequence for finding roots of scalar equations.

For the scalar case the operator equation BX = 0 becomes

f(x) = 0 _
T

and the sequence defining A becomes

0 = f (Xn) [Xn+ 1 - xn] + f(Xn) , n = 0,1_2, ....

The appropriate metric space S is the scalar field with the usual

I. metric. As before, Xn+ I = Ax n, n = 0,1,2,..., and x 0 is an

approximate solution of f(x) = 0. As can be seen from the scalar

_i application the basic involved is a curve is
concept geometric;

sequentially replaced by its tangent line, i.e., the nonlinear prob -_

! lem is replaced by a sequence of linear problems. Since there is a

well developed structure for linear problems, e.g. _, superposition

for systems of linear differential equations, the algorithm becomes j_ _

computationally attractive. In addition, since the linea_r two-point -,_
.±

5oundary value problem can be reduced to repeated numerical integ--'a-

tion of iniLial value problems, the method is readily adap_table to
o

high speed automatic machine computatien.

A basic generalization of Newton's Meth_od, to operator equa-

tions in Banach spaces, was first obtained Warga 6

considered the solution of the initial value problem for first order

. -" -_
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I differential equations by a special case of Kantorovitch's generaliza-

tion. The algorithm was apparently first suggested for boundary

value problems by Hestenes 7 who called it "Differential Variations, "

and later further developed by Bellman and Kalaba 8 who refer to the

technique as "Quasiiinearization. " Kalaba gives a convergence proof 8

based on monotonicity and convexity arguments, for the case of a single --

" second order differential equation with two-point boundary conditions. . •

A convergence proof for N dimensional systems was given by t2cGill
9

and Kenneth. The latter proof proceeds by establishing sufficient

conditions for the operator A to be a contraction of a complete

:_ metric space into itself. The desired results then fol..gw from the '
10 J

Contraction Napping Principle. The method is also mentioned by
ll '

Kelley who remarks tha_ computational experience with the technique

is lacking.
= i"

i_,

: _RICAL _PPLICATION ,>

i In this section we present a brief description of a numerical

_- procedure for solving the linear system• This procedure, with

_- appropriate modifications, was used in obtaining the solutions to

{- the numerical examples included in this report.

!_ At the n+l st stage of the iteration we have the linear system

• t,

i xn+l- J(x't)Ix+l -x ]+ F(x,t)
t_

which is equivalent to
i

J _

_ X = C(t)X(t) + D(t) , t e [t0,tf]

,=_ x.= (x_,...,xN)

xl(tO) = xlO xl(tf) = Xlf

.)

.- _l_ _

=

i

1966014492-008



m_

Generate by numerical integration _. set _X (2N'_i)
(t), i _ _,...N

of solutions of the homogeneous system X = C(t)X(t) with initial

conditions

(_l)

, x (t o) = (o,o,.. ,O,x_l 1,o,...,o)

: (_2)
X

(tO) = (0,0,...,0,x_+2 = 1,0,...,0)

Jn
_

;_ x (N)(t o) = (o,o,... ,o,... ,o, t)..
% - i

¢_ Generate a particular solutio, '_, X "-P) "__g) ol the nonhomoganeous

t system X = C(t)X(t) + D(t) will initial eonditim'.s

" , t

,. ()
x _ (to) = (X_o,X2o,...,xN,_,h,...,_/.:

whe._e Ki, i ii...,_2, a_'earbitrary, e.g., 2 " "

v

" f suggestion _, " .;.hard Bellman, beThey should, however, follow_n_ a

I_ chosen to preserve numerical p_:ec_';ionin _o _ _.gthe N_. si_itane-o

ous linear equatiens given below. The soluti<,n X(t) of the non-

_- homogeneous system with the prescribed bounda'_'yconditions is then

given by -_-

(,
l) (2)

:i x(t)=c_tx _ (t)+ _+2x (t)+ ...+ %x(HI(t)+x(P)(t),

t
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where the N constants CN_ i i i_ N 3 are determined from

, e boundary conditions at t = tf by the solution of N2 simultane-

ous linear equations.

For the purpose of conserving rapid access storage and also as r-

a check on the solution of the linear system the solution X(t) was

not obtained from the linear comblnation given above• Rather it was

calculated by once more integrating the nonhomogeneous system

X = C(t)X(t) + D(t) with initial conditions

X<'0) = (Xl0'X20'''"XN_CN_+l + _'C2N-+2 + _'''" cN + _32

i. The latter procedure requires the storage of only the final values

{x+Ii l), p) ,
i_ of the vectors , i - I,.. ,N, and the final value of,

{ for the computation of X(_). The solution X(t) is of course _

: stored since it is required for the determination of C(t) and

I] D(t) for the next iteration. :

• ii _ ORBIT.AL I_.RGEPT EXAMPLE

The first example although not an optimization pr_blem sel_res

• to illustrate the application of the algorithm to a given nonlinear "

ii boundary value problem, i_-

The problem solved is that of determining the free fall path

i which a space vehicle must follow in transferring froma specified

_ position three hundred miles above the earth to another specified __

i position six hundred miles above the earth, with • fixed transit _

time. The vehicle is assumed to be in coasting fllgh t and the-p_r-

tu;bing effect of the moon is included. A schematic diagram Of the

probl_m is shown in 9ig. t, where ._(t_ = (x O(t),yOct) ,Zo-(t)>; the

t f"

8
f.

-- , .. • f _-- .._ _mm I vz_- -.-- -- i ii _ u nm _ _ _ _ nmw, mm.n..,--w | n a nj B
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starting vector, is of the simplest possible form, namely, the straight

line joining the two points in space_ X*(t) is the solution vector.

The unit of length is taken to be the radius of the earth and the

principal gravitational constant is normalized to one. This results

in a time unit of 805.46 seconds.

The sixth order nonlinear system and two-point boundary conditions

which furnish _he mathematical description of the problem are given by •

X_, " X _'Mx:-
r rM_

_YM5_- y "_'YM_ t [0,2 ]"y = - Kq+"y-- KMQ" - ;r _
r M

-z ZM

z :- Kr--_+ KM(ZM 3 r3_

x(O) = 1.076000 x(2) : O.

y(O) = O. y(2) = 0.576000

z(O) = O. z(2) = 0.997661

I V

[x2 Z 2 ]r = + y2 +
i v-

= 2 z2] _rM [x_+ yM +

±

6 : [(XM - x) 2 + (YM " y) 2 + (ZM _ z) 2] 2

For simplicity the lunar coordinates, XM' YM' ZM' are assumed

constant.

The time interval [0,2] was divided into i00 pares and the

necessary numerical integrations carried out by means of a high

speed digital computer (IBM 7094) to an accurazy of seven signifi-

, |
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cant figures. The results are exhibited in Table I where for brevity

only six points in time are sho_n. X0(t ) is the linear starting

function; Xl(t ) is the first mapping; X2(t ) is the second mappingj

etc.; and X*(t) results from the integration of the actual non-

linear equations with the initial velocities,

i(0) = 0.101637

_(0) = 0.472285

(0) = 0.818022 ,

t

obtained from the final iterate.

l_ne sequence IXn} converged, within the accuracy of our com-

putations, in three iterations with:

t

p (XI,X0) = 0.480116

_ P(X2,XI) = 0.133753

P(X3,X2) = 0.004375

p(x4,x3) = o.o00004 ,

where

P(Xn+I,X n) = maXlxn+l(t ) - Xn(t) l + maXlYn+l(t) - Yn(t) l
t t .

+ maXlZn+ l(t) _ Zn(t) l .
t

As a further check on the over-all accuracy the perturbing

force was set to zero and the fi_l value of the magnitude of the

initial velocity was compared with that obtained by the closed form

solution for the two-body problem. Within the accuracy of our com-

putations these values were identical.
d
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We note that we have simply and rapidly produced the numerical

__ solution to a simple orbit determination problem_ viz,, given the

position of a body at two distinct times, determine the time varying

orbital elements of tlLe body in the presence of perturbing forces.

Solutions have also been produced even when the _o points are ex-

actly 180 degrees apart. In this case the straight line could not

be used as a starting function since it is singular. However, a

simple triangular path was sufficient to produce the characteristic

rapid convergence.

LUNAR DESCENT EXAMPLE --MAXIMUMRANGE

A very simple variational problem was chosen for the second

numerical example. This problem concerns the maximization of the

translationa] range of a lunar vehicle during descent to rest from

a hovering condition i000 ft above the lunar surface. The time

__j for the maneuver was fixed at 2.062 minutes.

For the purpose of generating this numerical example the follow-

ir_ simplifying assumptions were made:

Constant thrus_ acceleration

Unifo__ gravitational field

Analysis restricted to two dimensions.

The problem then is reduced to finding the t_hrust steering angle time

history which prodaces the maximum range in the g_en fixed time.

The associated boundary -value problem may be obtained by the

methods of Chapter 4 of Ref. ii, or by the Pontryaginmaxi_mmprin- _-
12

ciple. The resulting boundary value problem is given by the fol-

' lowing nonlinear differential equations and boundary conditions :

] 9660 ] 4492-0 ] 3



\

6 = T u _ = f(1)
; t e [t0,tf ]

_2 2._
('u+ _v)

¢ =T-- v
-'-------Y"gM = f(2)

(z2 + )
- U

_" = v = f(3)

= . _I = f(4)
U

i = - _ = f(5)
v y

= 0 = f(6)
Y

, u(t0)= u0 u(tf)= uf

v(t0) = v0 v(tf) = vf
v

Y(t0) = Y0 y(tf) = yf

The state variable u is the indefinite integral of the

r lnge x, and y is the vertical height measured positive-up

along the local vertical. The local gravitational constant gM

has the value appropriate to the moon. In addition, the adjoint

vamiables have been scaled by putting % at the initial timeX

equal to o_Le.

f
12
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i

The unit of length was chosen equal to the initial altitude of

i000 ft and the local gravitational constant and vehicle mass were

put eq_al to one. This resulted in the following normalized data

for the problem-

u0 = 0.000 uf = 0.000 x0 = 0.000

v0 = 0.000 vf = 0.000

Y0 = 1.000 yf = 0.000

T = 5.000 to = 0.000

gM = i.000 tf = 9.000

This normalization resulted in a time unit of 13.70 seconds. A

crude starting function X0(t ) _zas chosen as follows:

_ u0(t) ---0

v0(t) -=0

Yf- Y0
Y0(t) = Y0 + tf - tO C

(t) - c3Y0

_u0(t)= cI - t

hv0(t) = c2 - c3 t ,

where the three constants el, c2, and e3 correspond to an arbi-

trary estimate that the steering angle, measured from the local

horizontal, should be initially zero, equal to _/2 at

tf
t = -- and slightly less than _ at t = tf.2'

_ 13

L
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The sequence IXn] for this case converged uniformly to an

accuracy of 5 significant figures in six iterations. The total

computer time (iBM 7094) required for this problem was 18 seconds.

The desired final value of the range xf = i00, 200 ft was ob-
tained from

tf

Jxf = u_(t)dt ,

t o

.
where u (t) results from the integration of the nonlinear state

and Euler-Lagrange equations with a complete set of initial values

taken from the final iterate. This final integration of the non-

linear equations also served as an over-all check on the solution.

L_OWTHRUST ORBITAL TRANSFER EXAMPLE --MINIMIIMTiME

The third and final example concerns the problem of minimizing

the transfer time of a low thrust ion rocket between the orbits of

Earth and Mars. This p_oblem involves additional complications over

the previous problems, the most significant of which is the fact that

the final value of the independent variable is no longer fixed.

To simplify the problem as much as possible the rocket's thrust

level was assumed constant, and thus the single control variable is

the thrust direction. Further, the orbits of Earth and Mars were

assumed to be circular and coplanar, and the gravitational attrac-

tions of the two planets on the vehicle were neglected. The follow-

ing system parameters for the low-thrust vehicle were adopted from

Ref. 5:

Initial Mzss, m0 46.58 slugs

Specific Impulse 4700 see

Propellant C_asumption Rate, _, -6.937 x 10-7 slugs/see

Thrust, T, 0.127 ib

Thrust/Initial R_eight 0.9 x i0"4

f
14

L
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The equations of motion are given by:

Radial Velocity

= f(1) = u ,

_adial Acceleration

2

= f_2jt_ _ v k + T sin _ .•

r r2 mD + _t

Circumferential Acceleration

¢ = f,3_£_ = . uv +
COS

r _+_t

v

where u and v are the radial and circumferential velocities

re;pectively; r is the radius; and @ is the thrust direction

angle measured from the local horizontal. All the initial and

i final values of the state variables were specified, and the quant_ _j

to be minimized was tf, the final time. Since the method as pre-

viously outlined required a fixed final time, the prouedure was al-

tered to suit the minimum time problem. What follows is a brief

description of the modified procedure and a discussion of the nun_ri-

cal results.

The two-point boundary value prob].em resulting from the Euler-

Lagrange equations is given by -

= u = f (i)

2 %

L k + a(t) u (2)= --_ t =f

r + _

h

= _ uv + a(t) v ! = f(3)
r 2

1-
15
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2

r u r2 v

U r r v

V r U r v

where

a(t) = T
m0 + flit _

and the boundary conditions are "

t = 0 t = tf (unspecified)

r(0)= r0 r(tf)= rf

u(0)= u0 _'_fj_ = uf

: v(0)= v0 v(tf)= vf ,

This may be written as

x = F(X,t)

where

(f(1) f(6))
Y

and

x(I)(t)= r(t) _ x(2)(t)- u(t) , x(3)(t)= v(t)

x(4)(t)- _(t) , x(5)(t)- _u(t), x(6)(O - _v(t)

f
16

_ I _ IIII IIIII ] I I Illlll

1966014492-018



t

t

The method proceeds as before by solving the following sequence of

linear L-_opoint problems

x+1=J(_,t)[x+t-_nj+ F(X,e) n=0,1,...,

_ where j(X,t) is the Jacobian matrix of partial derivatives of the

f(i) with 2espe-t to the x (j), i = i,...,6, j = i,...,6. A st_zt-

ing vector, X0(t ) , and an estimated final time, if0, are assumed

and the sequence of linear boundary value problems is solved numeri-

cally by the pz'ocedure outlined previously, with the following

boundary values:

t = 0 t = tfk

(i)(0) = rn(0) = r0 (xn

x(2)n(0) = Un(0) = Uo x(2)'(tf)n = Un(tf) = uf

. Xn(3)(0)= Vn(0) = v0 x(3)(if)= Vn(_f) = vf

x(4)(0)= _ (0)= 1
n r

n
W

n = 1,2, ....

Setting %r(0) = i accomplished the scaling of the multipl_ers.

The iteration proceeds until P(Xn+l,Xn) < _ where

- _ • (!) (i)

i=l t ¢ [0,tfk] n

- 17 IF,

. _...-._.S._=,j_N.:..,p..._ " . -_ '_. .-_. .--"_m,_._-vu;._'a-_._=_v'4_ • . . ,_, ._Jq'-_-_.__,_ , .......... ,_ ;_
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At this stage =he final time, tfk, is adju-.ted automatically

according to the difference [rf - r(tf )] by a scalar applica,

tion of the Newton-Raphson procedure as follows

(tfk = tfk.l)

. = + _(tfk) r(tfk_I) 'tfk+l tfk ...... _ [rf - r(tfk ) ]

where the derivative of the final time tf with respect to the

final radial distance rf has been obtained by a finite difference

approximation. The above iteration on Xn now continues for the

- new final time tflebI until p is again _ _. The over-all process .

proceeds until p < _ where
7"

fk+l
?

and b is a scaling factor. The_cozTespond_ng iterate Xn+ I is

_i accepted as:the solution to the minimamtime problem, and_a final

check is run by integrating the nonlinear Euler-Lagrange equations

i with a completeset of initial conditions taken from the final

iterate.

I For t_e purpose of numerical precision the data for the sample
problem were normalized to obtain

! _ r0 i.O00 vf = .8O98
I " u

i rf = 1.525 uf= 0.000

k = 1.000 mo = 1.000 - .

v0 _I.000 • = - .07487

U0 = 0.000 -" T = .1405

1966014492-020



This resulted in a time unit of 58.18 days. The starting vector

X0(t) was chosen rather crudely as follows:

tf0 = 178.0 days, or 3.060 of our time units

( rf - r0
x l) r_ = r0(t) = r0 + _f0 t

_ %(2)(t)= uo(t)- o

i

%(3)(t)= vo(t) r k __- = \r o(t);

f

.,4)(t)= x (t)- l.o0o
- 2% 0

r 0 :: i

.5200 for t e [0, _ tf0]

[: -.5000 for t e (½ tf0, tf0]
L

{7 .3000 for t £ [0, ½ tf0]

[_ x Vo _0.000 for t e (½ ] .tf0' tf0

! The final two starting functions _ (_) m,d _ (t) correspond
u0 v 0

•_ to a control angle 00(t) which is constant at 60° above the

I local horizontal for the first half of the transit time, and con-

---[ ........... stant inward along the local,vertical for the remaining half of the
(

transit time (see Fig. 2).

'_. i ._ The sequence [Xn] converged uniformly to an accuracy of 5

" ] significant figures with 4 shift_ of the final time in 13 total

iterations. The zesultant minimum time,was found to be 193.2 days;
11

in agreement with results previously obtained by gradient methods.

! 19
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The total computer time (IBM 7094) required was 36 seconds. Fi_are 2 -

illuotrates the behavior of the control angle prog-_am, _here _0(t)

- is the starting function, 61(t ) t_hrough _4(t) correspond to the .

4 shifts of the final time tf, and e (t) results from the inte-

gration of the nonlinear staue and Euler-Lagrangc equations with _

the initial values taken from the final iterate. The curves for

92(t), @3(t), and ?4(t) lie, within our plotting accuracy, on

the solution curve 0*(t); except for the final segments °_ indi-

cated on the figure.

We obsc_e that for t_his pazticular example t_e approach just

described is systematic, simple to apply, and yields rapid conver-

gence from crude a priori starting functions.

By simple changes in the initial dsta, solutions were also gen-

erated for Earth to Venus and Earth to Jupiter transfers. The mini-

-_ mum times for these were 139.2 days and 47P _ days respectively.

.C.ONCLUSION.S,
t

The numerical examples of this paper suggest that the Newton -

Raphson operator technique may be a useful computational method for

obtaining solutions to meaningful nonlinear boundary value prob_.ems;

and in particular for obtaining extremals lot variational problems.

%t may be of particular use in generatzng families of solutions for

given variational problems with differing values fcv the relevan=

parameters; for in this case t/_.esolution for one se_ of parameters •

becomes the starting function for the succeeding _roblem. This

implies that the desired family may be-generated with reasonable

" computation time. -

It should be noted that dividing _he boundary conditit._s exactly ,,.,

: in half was purely for cQnvenience of discussion; the compu_ationai

problem obviously simplifies Jf more conditions are }a_own at one eDd
im

than at the other. In addition, it is _ that the start-

I[

{
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ing functions be continuous or meet the boundary conditions; all

of the iterates, however, will have these properties. Also, although

the examples shown have the terminal values of the state variables

specified, this is not a necessnry restriction. If a particular

state coordinate is left unspecified, the transver_ality conditions

require that the corresponding X(tf) be zero. This simply changes

the linear algebraic system to be solved fcr the coupling constants.

The solutions produced by this method sstisfy the neces3ary

conditions for optimality as given by the po_._v_- maximum princi-
12

- p!e_ and classically the Weierstrass and Clebsch necessary condi-

tions. However, the q_estions of global optimality, and sufficiency_

require further tests 2"13 and remain open.

We note certain reservations. Although it was possible, for

_ _ included examples, to obtain crude a priori starting functions

sufficient to produce convergence, it is not clear that this will

remain true for other more complex problems. If it should occur

that starting functions sufficient for convergence are not easily

obtainable then one might consider a hybrid approach, e.g., using a

few steps of a gradient technique to produce the necessary starting

functions.

Finally, we observe that application of this algorithm to prob-

lems with bounded control variables and/or state variable constraints
v

requires further modification and extension of the technique. A

sample problem with a state variable inequality constraint has been

solved and will be reported at a later date; a problem with bounded

control is presently under study.

21
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I X__ O. 0.4 0.8 1.2 1.6 2.0

X0 1.076000 O.860800 O.645600 O.430400 O.215200 O.

X1 1.076000 1.015153 0.845061 0.6i0986 0.323847 O.

x2 1.076000 1.048799 0.900816 0.657('Ji 0.346085 O.

x3 1.076000 1.049839 O.302586 0.658550 O.346867 O.

x4 1.076000 1.049840 O.902587 0.658551 0.346868 O.

X* 1.O76OOO 1.049840 O.902587 0.658551 0.346868 O.

YO O. O.115200 O.230400 O.345600 0.460800 O.576000

Yl O. 0.17292?" 0.324202 (}.447591 0.537713 0.576000 :

Y2 O. O.184664 O.348339 0.475158 O.553667 O.576000

Y3 O. O.185100 O.349180 O.476056 O.554179 O.576000

Y4 O. 0.185100 0.349180 0.476057 0.554173 0.576000

y* O. 0.185100 0.349180 0.47605_ 0.554173 0.576000

Z0 O. 0..199532 O.399064 O.598597 O.798129 O.997661
I

Z1 0 0.299519 0.561534 0.775250 0.931347 0.997661

Z2 O. 0.319848 0.603341 0.822998 O.958980 O.997661

Z3 O. O.320602 0.604800 O.824553 O.959854 O.997661

Z4 O. O._v6uo O.604798 O.824555 O.959855 O.997661 ,

Z* O. O.320603 O.604798 O.824555 O.959855 O.997661

o h

_t O. 0.4 0.8 1.2 !.6 2.0

Table I Time Histories for Intercept Example

f
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-- [ X(2) = (0., 0.576000, ,

I _ 0"997661)

_ X*(t)X°(t) i

. -

i / X(O) = (1.076000, 0., 0.)
x

Figure I. Schematic Diagram for
Intercept Example
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180 0 O*(t) --

!

90

Oo(t)e

0 l A i J

o 50 ioo 15o 2oo

Time - Days

Figure 2. Contzol Angle Programs for

Orbital Transfer Example
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